CASE REPORT

Sokoto Journal of Veterinary Sciences
(P-ISSN 1595-093X/ E-ISSN 2315-6201)

http://dx.doi.org/10.4314/sokjvs.v13i3.11

Life saving tail amputation in an African lioness (Panthera leo L) in captivity

OD Eyarefe¹, CO Oguntoyé¹, TA Olusa² & OA Morenikeji³

¹. Department of Veterinary Surgery and Reproduction, University of Ibadan, Ibadan, Nigeria.
². Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia.
³. Department of Zoology, University of Ibadan, Nigeria

*Correspondence: Tel.: +2348055063671, E-mail: wumcel06@yahoo.com

Abstract
This paper reports surgical management of self-tail mutilation in an African lioness triggered by an irritation of unknown aetiology. The lioness was reported to have eaten up to two-third of its tail. Lack of darting facilities delayed quick intervention until the animal was lured with food bait into a restraint cage that enabled chemical restraint and surgical intervention. Tail amputation was performed as described for domesticated canine species. Healing was uneventful with animal returning to normal activities. Tail amputation is an uncommon procedure in wild species. Its curative indication was warranted in this case. There is need for storage of darting facilities in every zoological garden to aid quick intervention and preservation of animals especially endangered species in captivity.

Keywords: Amputation, Lion, Self-mutilation, Tail, Therapeutic

Received: 12-03-2015 Accepted: 25-08-2015

Introduction
Tail amputation is an uncommon procedure in wild life species. In domesticated animals, especially dog breeds, its performance in conformity with breed’s standards or tradition currently generates moral/ethical controversies, although, its therapeutic indications are universally accepted (Hedlund, 2002; Davidson, 2006; King, 2007; Well et al., 2011). Therapeutic tail amputation is indicated in cases of severe tail injury or chronic wounds where conservative management methods have poor prognosis for healing or acceptable cosmetic results (Hedlund, 2002; Aronson, 2003). Septic tail wounds with localized osteomyelitis, if not properly managed, could progress to septicemia and systemic diseases like glomerulonephritis and myocarditis with life threatening consequences (Calvert & Wall, 2006). The associated pains and other neuro-psychological impacts could cause anorexia, unthriftiness, irritation and aggression towards cage mates with several spirally negative effects for captive animals in the zoological garden.

Case presentation
The surgeons at the Department of Veterinary Surgery and Reproduction, University of Ibadan were alerted about the condition of an adult (6 year old) African lioness (Genus: Panthera leo L) nicknamed “Dame” kept in captivity at the University of Ibadan Zoological garden. She had had an injury of unknown aetiology at the tip of her tail which she had severely mutilated with much blood loss. The zoological garden has five lions (3 males and 2 females). There was no history of fight with any other lion prior to the injury because they are kept separately in individual cages. Immediate intervention was not possible due to unavailability of darting equipment. Consequently, the handlers resorted to food bait to lure her into a restraint cage where drugs were administered with minimal additional manual restraint techniques six weeks after the wound was first observed. As at the time of surgery, she was emaciated, hyporexic and depressed. She had lost about two-third of her tail, and was left with about fifteen centimeters of residual tail stump, which was messy with blood stain. The wound was necrotic and exudative (Plate I). A decision to stem
the spread of apparent infection by amputation was taken.

Management and outcome

Anaesthesia

The lioness with an estimated body weight of 130kg based on the weight range of 120-250kg in literature for adult African lion (Lamberski, 2015), was anaesthesized with 5% Ketamine hydrochloride (Non-proprietary; ROTEXMEDIA LAB, Trittau Germany) (10mg/kg) and 2% Xylazine hydrochloride (XYL-M2®, VMD, Belgium (1mg/kg). Both drugs were mixed in a syringe and administered as a single bolus at the thigh muscles (Logan et al., 1986, Grassman et al., 2004, Wack, 2005). Onset of action was uneventful.

Surgical procedure

The tail was prepared for aseptic surgery, following which a tourniquet was applied to the base of the tail (tail root) to reduce haemorrhage. Ten millilitres (10ml) of lignocaine hydrochloride (Labcalin®, LABORATE, India) was infiltrated caudal to the tourniquet at the point of proposed amputation, and semi-lunar skin flaps were made, and extended beyond the point of disarticulation. The skin flaps were retracted cranially. The two lateral and medial caudal vessels were ligated with size 1 catgut (Ethicon, USA), and severed just proximal to the proposed site of transection dorsally and ventrally to expose the coccygeal muscles. The coccygeal muscles were transected and the coccygeal vertebrae disarticulated. The dorsal and ventral skin flaps were pulled over the tail stump and sutured with size 2 Nylon (Ethicon USA) using cruciate suture pattern (Plate II).

Postoperative Care

The animal was brought out of the restraint cage into a clean compartment earlier prepared for animal comfort and to prevent possibility of injury that may result from recovery episode with the restraint cage. Cephalexin, 10mg/kg every 12 hours (Dowling, 2010), incorporated in food bit was administered for five days post surgery. The tail wound was also covered with honey as earlier described (Eyarefe & Oguntoye, 2012, Eyarefe et al., 2012). The wound healed uneventfully and sutures were removed three weeks later when the lioness could be lured into the restraint cage under chemical restraint with xylazine–ketamine combination.
Discussion
Tail amputation in wild life is uncommon. The procedure which is mainly therapeutic has been reported in a single case in association with tail fracture injury sustained through fighting with a cage mate (Olatunji-Akiaye et al., 2010). The aetiology of the case under consideration was unknown. The degree and severity of wound and rapidness of self-mutilation was noteworthy. The African lion (Panthera Leo L) usually has a tail length of 60-100cm (Sunquist & Sunquist , 2002). A self-mutilation of two-third of this tail length shows the severity of insult and associated self mutilation. A chronic infection process (osteomyelitis) like this may produce septicemia and systemic diseases such as glomerulonephritis, myocarditis and other life threatening diseases (Calvert & Wall, 2006). This was the rationale for the amputation and prophylactic antibiotics therapy. The use of honey dressing in this case was encouraged by previous reports of honey efficacy in prevention of infection and promotion of wound healing in wild species (Eyarefe et al., 2012; Eyarefe & Oguntoye, 2012). The safety of personnel and risk of frequent sedation for wound dressings were also major concerns in this case. The uneventful healing and restoration of the animal to health and normal lifestyle (Plate III) shows the efficacy and effectiveness of the therapeutic methods.

The African lion (Panthera leo) is one of the vulnerable wild feline species (Lamberski, 2015). It is currently in the “red list” of the International Union of Conservation of Nature (IUCN) as threatened species , with current conservation status record of extinction in North Africa, near extinction in West Africa, and population of 20,000 across territories in Southern and Eastern Africa (Packer et al., 2013). Their threat in the wild have been associated with indiscriminate killing (to protect human life and livestock) and prey base depletion, habitat loss due to human activities (Bauer et al., 2015), and poaching leading to suggestion of fencing of conservation areas (Packer et al., 2011, Packer et al., 2013). This successful outcome of surgical intervention has helped in the conservation and preservation of an endangered lion species of Africa.

Acknowledgement
The authors acknowledge the University of Ibadan Zoological garden team of animal handlers and the Veterinary surgery Unit animal technologists’ team for their assistance during and after the procedure to ensuring the success of the procedure and preservation of a precious species.

References


